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FOREWORD

This report was originally submitted to the Graduate School of
the University of Notre Dame in partial fulfillment of the requirements
for the degree of Master of Science.
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NOMENCLA~TURE

C Pitching moment coefficient
C = M

CM M

CM Pitching moment coefficient derivative (rad" )

SCCM M aM

M a &L a QSd

CM Damping moment coefficient derivative (rad- )

q 8c M Mqq
CMM =I z d (i' QSd

CM Lag moment coefficient derivative (rad")

aC M w&

M. Qa) ad (ad ) QSd

C Mpa Magnus moment coefficient derivative (radZ)

a2 C N P-pa MPP PS

I PCL aa3p N __\ Qd ý(M -"-) aQ

C Normal force coefficient derivative (rad1)
a.

d Reference length = projectile caliber (ft)

g Acceleration due to gravity (ft /sec2)

I Transverse moment of inertia (slug-ft2 )



Ix Axi. ment of inertia (slug -ft2)

"KN Amplitude of nutation mode (degrees)

"K Amplitude of precession mode (degrees)p

"KT Rolling trim angle (degrees)

t, Body length (ft)

p Roll rate (rad/sec or RPM)

p, q, r Angular velocity components (rad/sec)

b Total span of the fins

P Pd nondimensional roll rat e
2V

SNondimensional pitching velocity
2V

q Complex pitching velocity (rad/sec)

q = q+ir

Q Dynamic pressure, 1/2 p V (lb/ft2)

s Gyroscopic stability factor

S Reference area, nd24 (ft2)

t Time (sec)

U, v, w Transverse velocity components (ft/sec)

x, y, z Coordinates (ft)

X. Distance from the nose to the center of gravity (ft)
1

y Distance from the center of the body to a chordwise
strip on the fin



V Total velocity (ft/see)

Z Normal force (ib)

OL Angle of attack (deg or rad)

-a Complex angle of attack (deg or rad)

-= + ia.

Angle of sideslip (deg or rad)

Nutation and precession dynamic damping factors•N.p of linear aeroballistic theory (sec-i)

V Nutation and precession damping factors due to
p ~varying motion frequency (sec-1)

* * VýN, p 'Y,p = XN, p +Np

p Air density (slugs/ft3

"IN, p Nutation and precession frequencies (rad/sec)

T Dynamic weight factor

()o Linear term

()2 Nonlinear term

(f) Fins

am Mean angle of attack V K% + KZ , (deg)

6 Fin incidence angle (deg)

6 eAerodynamic symmetry angle (rad or deg) e.g.,
an elevator deflection

C'ý/1



e Angle of pitch (deg or rad)

0 Complex pitch angle (deg or rad) 0 0 + icp

Angle of yaw (deg or rad)

Damping parameter defined by Equation i9

r Yaw of repose (rad)

Superscript

C) Indicates differentiation with respect to time
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A13ST RACT

Subsonic three-degree-of-freedom wind tunnel tests were util-
ized to demonstrate the dynamic instability of a five and one half cali-
ber long, spin stabilized body of revolution. A modification of this
body, i.e., the addition of fins to the boattail sectic 1, is shown to be
an effective means of controlling this instability. The optically ac-
quired angular orientation data was fitted to a closed form solution
of the differential equations of motion. The pitching, damping, and
Magnus moments were evaluated as both linear and nonlinear functions
of angle of attack. The airflow over the model was observed by means
of smokeflow photography.



INT RODUCT ION

To increase the range of a projectile one commonly increases
the ballistic coefficient, i. e., the ratio of weight to the product of
drag coefficient and cross sectional area. Thus, long, boattailed
projectiles such as the subject of this study, shown in Figure 1, have
evolved. In some cases, particularly at subsonic velocities, flight
instabilities have resulted in short range and poor accuracy, necessi-
tating the high ballistic coefficient design to be abandoned.

Increasing the length of a projectile tends to separate the center
of pressure of the normal force and the center of gravity, thereby in-
creasing the pitching moment and thus making the projectile more dif-
ficult to stabilize gyroscopically. Boattailing further aggravates this
situation by moving the center of pressure further forward on the pro-
jectile. The damping moment is decreased by boattailing (Ref 8) ,
allowing the Magnus moment to undamp the nutational mode of motion.

The prime purpose of this report is to demonstrate that vanes or
fins on the boattail of this type projectile can prevent nutation insta-
bUity. Both linear and nonlinear aerodynamic coefficients of the body
of revolution and the body modified by the addition of the boattail fins
were obtained from three degrees of freedom subsonic vertical wind
tunnel testing. A total of 63 qualitative and quantative test runs was
conducted at nondimensional spin rates from 0. 22 to 0. 45 at a wind
tunnel velocity of 50 feet per second.

AEROBALLISTIC THEORY

The coefficients of the differential equations of angular motion
of the wind tunnel models were extracted both as linear and nonlinear
functions of angle of attack utilizing aeroballistic theory (Ref 1).

Linear Theory

For linear-variations with angle of attack the aerodynamic mo-
ments can be written as



M + iN = -Ma + M 1M 6L~p -PMIa -i 6ip (1)
rI. & e

The resulting complex differential equation of motion is

"_ + + iP . e E ipt

I 6 e(1a)

The solution to this equation assuming constant velocity and roll rate

is found to be

6 = KNe ( N + iW•N)t + Kpe (Xp + iwp)t + KTeipt (2)

where

kN,p 2V 2L ' (1 + Ct C M p_.I (3)

•N p Ix Gt I ) (4)
p1 (N. p (1)

1½ .1 (5)
11/2

(I - I/ 2

(I p)(

Sg - 41 cM QSd (6)
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CM be QSd

Nonlinear Theory (Ref 1, 2, 3)

If the aerodynamic moments are assumed to be nonlinear functions
of the complex angle of attack, then

-(M'tiN) =M a(IOLI 0 a + Mo q ( Ot~ L + M oL ( L +) M PO+

(Ia I)PU (8)

where

M (Ia1) -- M + M I1
a O0  a2  (9)

M qla I Mq + Mq 2L (10)

0- 2
M. ld M. + M. CLal2(

Mp (jll) = Mp + Mp 2 (12)
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The nonlinear theory assumes an approximate solution of the same
form as the linear theory; however, the stability parameters now
contain a nonlinearity in the form of a second order term.

The solution for the complex angle of attack is given by (Ref 1, 2):

iONt i¢•t
KNe + Kpe (13)

= e + i (14)

XNt Xp t
KN K N0 e ,K = K Pe (15)

xNp = ',p + ý N,p (16)

2 CM + Cm, .)

SN, p 2V ql (I ±TN p

(CM + C1M C 2

2x 21

I + rNop) (KNoP + KpN) + Kp, N Np T 1p,N I)] (17)

S



X Q~ r2IV c 2K
NIP zv d(pI ) Mz N op '"NIp KN~p

+ 2K K r 2I(8

£Nsp pV Np p

M + cM) (CM +C M 6 2

IL

C +C

+ M 21 Li P Np (K p + ON

+ 11 2 T)% (19)
~PON NIp - PON j
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P Ix (I i-)t +N p (20)
N p ýI 00 pN Pp1

x I
WNp =Np 21 (1 p (Z1)

Np

T = I -it_ (22)
N,p SNp

SN,p i (23)
4 1 (CM + CM 6C ) QSd

co Z N, p

where

6 2 K 2 2K2 (24)
SN,p N,p p,N

A. frequency variation, resulting from a nonlinear restoring mo-
ment, changes in the air density, velocity, or roll rate, will cause
the size of the arms of the motion to vary in the following manner
(Ref 3):
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K () ' , p (0) 1/

KNp(t [ i )p~ty po) (25)

Computation of Aerodynamic Coefficients

To obtain aerodynamic stability coefficients from the angular
data obtained from the wind tunnel tests, the aeroballistic theory is
fitted to the angular orientation data, 0 , ý. . This is done through
the use of the WOBBLE computer program (Ref 3). This program
fits the theory to short segments of the data in overlapping sections
so that the stability parameters, K Nsp ' ýN'p , wN,p, are determined

as functions of time. Since the nonlinear theory assumes an approx-
imate solution of the same form as the linear theory, the WOBBLE
program can be applied to both.

Computation of Linear Coefficients

Using N and s Nop * along with the velocity, dynamic pressure,

roll rate, and physical parameters of the projectile, the aerodynamic
stability coefficients, CM , CM + CM., and CM , were computed

a q CL pa

as functions of time from the following equations:

CM - W (26)
. Tr pd3V

2 iV
C +C - (N + I) (27)

q . QSd2
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S2V (X N X ) X 1 (C + CM ) (I-r) (28)"CM QSd N, (CIV q a

Computation of Nonlinear Coefficients

The nonlinear aerodynamic stability coefficients, CM a),
a.

C () + C (Mx) andC ( j ) were computed as polynomial
q y.

functions of the complex angle of attack as follows:

= [iZp = o + (a 6 QSd (29)

222 2 K2 KN xN K w
6 ý_. N w R _ (30)

Using a least squares technique to fit a straight line to w. N lop versus

52 yields (C ) as the intercept and (C ) as the slope.
a Mo0 M 2

Correcting *N and X by determing X" and from a logarithmic
'N p N p

technique developed in Reference 3, the actual damping rates X N

and X p are fitted simultaneously with a least squares procedure to

yield (CM + CM. )OD (CM +CM C M (CM P)0 and (CM pO)2

q q a PaPa



One must exercise great care in using these coefficients if, as
in the case of this experiment, the span of data is small. The higher
order coefficients may indicate a larger nonlinearity than is present
if the short data set contains even a small amount of scatter. A. plot
of the nonlinear coefficient will always yield a satisfactory value of
aerodynamic coefficient near the mean angle of attack of such a set
of data and will reliably indicate the hard or soft spring nature of
the coefficient, but may diverge rapidly from reality if values of the
coefficient are calculated near the end or beyond the data set.

EXPERIMENTAL TECHNIQUE

The 1. 95 inch diameter model used in the experimental program
was 5. 58 calibers in length with a 2.9 caliber double secant ogive
nose and a .59 caliber, 7V: 35' boattail. The University of Notre
Dame Aerospace Laboratory's extremely low friction jewel-bearing
support system allowed the model to pitch, yaw and roll with negli-
gible mechanical damping. The model is pictured in Figures 2 and 3.
Figure I contains an externally dimensioned drawing of the model and
a typical boattail fin.

Model Physical Characteristics

With the exception of a brass cylinder used to achieve an appro-
priate moment of inertia ratio and center of gravity location, the
model was constructed of high strength aluminum. The axial and
transverse moments of inertia were determined using a standard
torsional pendulum technique. These values together with the model
mass are listed in Table 1. The boattail fins were made from 0.01
inch aluminum sheet and attached to the base of the model at 170 cant
in the right-handed direction of model spin. These fins were found
to increase the mass of the model by approximately one quarter of
one percent and the moments of inertia by less than one percent, which
is nearly the measuring accuracy of the torsional pendulum.

The model was mounted with its center of gravity coincident with
the jewel-bearing support and dynamically balanced before testing,
and checked before each set of test runs on the jewel support.

10



Wind Tunnel Testing and Equipment (Ref 6, 8)

The dynamic stability wind tunnel tests were conducted in the
University of Notre Dame's vertical-downdraft wind tunnel at a veloc-
ity of 50 feet per second. A, Milliken constant speed motion picture
camera recorded the angular motion of the model during each test
run at a rate of 128 frames per second. Model spin was induced by
passing a high velocity airstream over the side of the model. Spin
rate was determined by a stroboscopic light source.

Smoke Tunnel Testing and Equipment

Smokeflow photographs of the finned and unfinned model were taken
in one of the University of Notre Dame Aerospace Laboratory's hori-
zontal two by two foot wind tunnels at the same operating conditions as
the dynamic stability tests. The flow visualization equipment used in
this investigation was developed by Brown (Ref 13). The smoke issues
from a rake through a single tube into the nonreturn type tunnel (Fig 26).
The velocity in this region is very low, of the order of one foot per
second. The smoke then flows through an entrance contraction, and
into the test section. A detailed description of the wind tunnel is given
in Reference 6.

Data Reduction

On each frame of movie film were recorded two reference points,
the center point of the model nose and roll position indicators. A
schematic of typical frame is shown in Figure 6. The relative dis-
tances from point to point on each frame were measured on an opti-
cal comparitor and converted to angular orientation. Overlapping
sections of this data from each test run was then fitted to the equa-
tions of aeroballistic theory, yielding the motion frequencies and
damping factors. This, together with the physical parameters of
the model anid the test conditions, gave the coefficients of the differ-
ential equations of angular motion.

11



DISCUSSION OF RESULTS

The objective of the test program was to observe and record a
wide variety of model motions generated with various initial angular
orientations and angular velocities. Qualitative observations of model
motion were made during the test, and so was a film record of the
types of motion which were most amenable to fitting aeroballistic
theory, i. eo, motions whose two arms could be clearly defined. In
all cases the gyroscopic stability factor was between two and three
and one half (Ref 3, 5) as is shown in Figure 24. This is sufficiently
above the limiting value of one (Ref 1).

Angular Motion of the Body of Revolution

The oscillatory motion of the body of revolution was characterized
by an undamped nutation arm and a strongly damped precession arm.
When KN was initially small compared with Kp , the total motion damped,
usually to half its initial size in approximately one precession cycle.
With the vanishing of the precessional mode, the motion consisted
solely of the rapid rotation of the undamped nutation arm. This, of
course, was verified in the WOBBLE calculation of the model damp-
ing factors, X N and % p . These are plotted vs time in Figures 12
through 17. An example of this phenomenon, shown in a complex
motion plot, is given in Figure 10. In several test runs the nutation
arm was initially the larger component of the motion, which resulted
in almost immediate divergence of the total motion.

Tests were conducted at initial roll rates from 1500 to 2500 revo-

lutions per minute or a . of 0.22 to 0.45. Considering that the prime

area of interest in the flightof this projectile is near the trajectory
apex, these spin rates would be obtained with a launcher rifling twist
of one turn of the projectile in 20 calibers of linear travel at quadrant
elevations of 4E to 65 degrees. Variations in roll rate had no observ-
able effect on the damping characteristics, but resulted only in the
expected changes in the motion frequencies. As Figure 24 indicates,
decreasing the gyroscopic stability factor lowers the nutation damp-
ing factor.

12



Body of Revolution Stability Parameters

The parameters of aeroballistic theory, the size, frequency, and
damping factors of the nutation and precession modes, were fit to the
photographically recorded angular motion utilizing the WOBBLE com-
puter program (Ref 3). In all cases the probable error of fit was less
than one tenth of one degree. The results, which were in agreement
with observations from many qualitative test runs, were obtained from
three of the data sets in which more than one and one-half precession
cycles could be discerned. The precession damping factor was found
to average 0. 25 per second, indicating an average half life of this arm
of less than three seconds (or 0.8 cycles). The unstable nutation arm
more than doubled its size every three and one-half seconds (or 9.5
cycles).

As Figures 12, 13, and 14 indicate, the motion arms and thus
their damping factors did not change as a linear function of time.
This is due to the nonlinearity of the Magnus and damping moments
in angle of attack, and also to the size of the measurement error com-
pared with the initially small nutation arm; and finally, at the end of
the data, the disappearance of the precession arm. The nutation fre-
quency decreased slightly while the precession frequency remained
nearly constant. This indicates the very mild stiffening of the pitch-
ing moment in angle of attack brought about by the appearance of the
boattail section in the flow. This very moderate hard-spring nature
of the static moment was found to have a negligible effect on the damp-
ing rates (Ref 2, 3). The pitching moment calculated by nonlinear
aeroballistic theory and plotted in Figure 25 was found to be very
nearly constant.

The damping and Magnus moment coefficients calculated from
succeeding sections of data varied only by a small amount with time
(Fig 18, 19, 20). The hard-spring nature of these moments, found
from nonlinear aeroballistic theory, was not readily apparent in these
plots, since the total angle of attack initially decreased to half its
size, but subsequently grew again, due to the divergent nutation arm.
The hard-spring trend of the Magnus moment (Fig 25) is due to the
formation of an asymmetrical vortex pattern along the lee side of
the body.

13



The Effect of Boattail Fins on the Angular Motion

Following the recording of the angular motion, the small boattail
fins were mounted on the boattail section of the model at the extreme
aft position. in all 23 qualitative test runs and 15 recorded sets of

data with the finned body, both motion arms damped. After a period
of nearly 25 seconds, angular motion was no longer observable. No
rolling trim angle could be detected due to boattail fin mass unbalance
or malalignment. Figure 11 is a complex plot of the motion of the
body with boattail fins, observed in a typical test run.

Boattail Finned Body Stability Parameters

The addition of boattail fins to the body of revolution nearly doubled
the damping moment and diminished, by approximately 20 percent,
the Magnus moment, yielding a more appropriate balance of these
moments for dynamic stability. I The precession arm damping was
lessened by a small amount by this rearrangement of the aerodynam-
ics, its motion half life was now approximately three and one half
seconds (or 1. 1 cycle). The nutation arm, rather than rapidly di-
verging, was found to be lightly damped, the half life being seven
seconds (or 16. 7 cycles). As the size of the arms decreased to the
area where KN + Kp < 3" the nutation damping factor, approached,
but never reached, zero, indicating the possibility of limit cycle mo-
tion if smaller, fewer, or less effective fins were utilized. A com-
parable decrease in the precession damping factor was observed, as
was to be expected. The motion frequencies, and especially the pre-
cession frequency, were found to be less linear in time than those of
the body of revolution. This had nothing to do with the spin rate which
was observed to vary only ten revolutions per minute or one half of
one percent over a seven and one-half second test run of either the
body of revolution per se, or the body of revolution with boattail fins.

Plots from both the linear and nonlinear aeroballistic theory
(Fig 21, 22, 23, 25) indicate that the pitching moment has a very
mild soft-spring tendency. Such a trend was unexpected, but may
be explained by the fact that, as angle of attack increases, the two
or three lee side boattail fins are washed out, while at very low angles
of attack they are lifting.

I 1A. theoretical estimate of the effectiveness of the boattail fins is
made in the Appendix

14



The Magnus moment coefficient also exhibited a mild soft-spring
trend in angle of attack as is indicated in Figures 21, 22, 23, and 25.
The hard-spring nature of the damping moment found from nonlinear
aeroballistic theory appears to have been tempered by the addition
of boattail fins, probably due to the same phenomenon that softened
the pitching moment.

The addition of boattail fins to a free flight projectile will cause
the nondimensional spin rate to approach 0. 3. Since the typical
launch d of this type projectile without boattail fins is 0. 15, the
nondimensional spin rate will increase throughout the greater part
of the trajectory, and the gyroscopic stability factor will approach
2. 3. The effect of 9 on projectile range and deflection can be in-
ferred from calculation of the yaw of repose at trajectory apex,

4 gA I d tZi Pa /Td z (1

C V ZV CM ) (31)

CONCLUSIONS A.ND RECOMMENDATIONS

Boattail fins have been shown to be an effective means of dynam-
ically stabilizing a long boattailed body of revolution at low subsonic
velocities. Their application should lead to the successful flight of
five and one half caliber, and longer, higher ballistic coefficient bodies
in this flight range.

The body of revolution was observed to be dynamically unstable
over a wide range of spin rates. The parameters of aeroballistic
theory and the stability coefficients extracted from the three degree
of freedom angular motion clearly defined the problem as a nutation
instability. This was due to the improper balance of the Magnus and
damping moments. By nearly doubling the damping moment and de-
creasing the Magnus moment through the use of the boattail fins, the
nutation mode was damped.

15



The use of an extremely low friction mounting system in the low
turbulence wind tunnel and the recording of the angular position of
the model 50 times per nutation cycle yielded excellent repeatability
of the linear aerodynamic coefficients and a good indication of tie
nonlinear nature of the aerodynamic stability coefficients.

Further aerodynamic testing should be conducted to ascertain
the effect of lower spin rate, movement of center of gravity location,
changes in the moments of inertia, variation of Reynolds number,
and other methods of modifying the aerodynamic characteristics.
Since this type body is generally designed for supersonic as well as
subsonic flight, three degree of freedom testing should be conducted
at supersonic and transonic velocities.

The estimated increase in drag due to the presence of boattail
fins (Ref 14) was found to be small compared with the drag reduction
gained by boattailing. The smokeflow photographs (Fig 26 and Z7)
would appear to support this conclusion. It should, however, be
corroborated by free flight measurements.
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TABLE I

Physical characteristics of the model

Reference diameter, ft .1625

Length, calibers 5.58

Mass, slugs .02

Axial moment of inertia, slug-ft 2  .000092

Transverse moment of inertia, slug-ft 2  .00102
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TABLE 2

Summary of the linear aerodynamic coefficients from

the body of revolution

(Mean Values)

Run No. Spin Rate CM CM + M
(rad/sec) a q + Pa

per rad per rad per rad

5C 220 3.05 -12.5 1.80

13A 180 3.07 -12.2 2.01

17A 180 3.08 -12.8 1.80
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TABLE 3

Summary of the linear aerodynamic coefficients from the
body with boattail fins

(Mean Values)

Run No. Spin Rate CM CM + CM CM
(rad/sec) a q a pa

per rad per rad per rad

ZZB 185 2.77 -23.3 1.72

22C 170 2.82 -26.6 1. 5,

24C 188 2.73 -20.4 1.58
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APPENDIX

Theoretical Estimation of Boattail Fin Effectiveness

Modified slender body theory (Ref 7, 15, 17) yields estimated
values of the normal force and the pitching moment of the body of
revolution of

C = - 1.5/rad

C = 3.35/rad

The normal force contribution of the boattail fins may be found using
an equation obtained from lifting line theory (Ref 4):

CZ T 2
Aspect Ratio

Based on the body cross-sectional area and taking the Aspect Ratio
as one,

f
C -. 33/rad

This yields a contribution to the pitching moment of -. 50, giving,

C - 2.85/rad

for the finned configuration.
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Using Sacks' formula (Ref 5),

CM d Cz /rad

qa

the pitch damping moment of the body of revolution was found to be

CM + CM = -14.2/rad
q

and for the finned body

CM + CM. 17. 3/rad
q

The contribution of the boattail fins to the Magnus moment can
be estimated by considering the yawing moment produced by the rela-
tive difference in incidence of the boattail fin on the right and left side
of the body when it is at an angle of attack in the vertical plane. This
treatment follows that given for airplanes by Perkins and Hage (Ref
18). The angle of incidence of the descending boattail fin is increased
by

6 = arctan -(V> ( py')
V

and decreased by the same amount on the ascending fin. Resolving
the incremental components of lift and drag perpendicular and paral-
lel to the direction of motion and summing the resulting moments
about the body by Strip Theory (Ref 1) yields,

cL

M 3 d
p5a

5Z



This result is an order-of-magnitude approximation since it does
not account for the boundary layer thickness, fin-to-fin or fin-body
interference and rectangular fins. This estimated Magnus moment
contribution of the boattail fins was found to reduce the average
measured value of CM of 1. 90 to 1. 79.

Pa

Because of the simultaneous increase of the damping moment
and the decrease in the Magnus moment combined with increased
gyroscopic stability, the possibility of stabilization of the divergent
autation mode of the body of revolution was indicated.
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